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Abstract. Energetic relaxation, drift, diffusion and recombination of charge carriers are
considered at low temperatures in disordered hopping systems. It is shown that, due to its scaling
form, an exponential energetic distribution of the density of localized states (DOS) generates
very specific transport characteristics which cannot be obtained for other types of DOS functions.
In contrast with other distributions, only an exponential DOS function allows (i) the introduction
of a low-temperature analogue of the Einstein relation between carrier mobility and diffusivity
for some initial time domain of relaxation and (ii) the description of carrier drift in strong electric
fields in terms of a field-dependent effective temperature.

1. Introduction

In the low-temperature limit (T → 0) carrier jumps to deeper states represent the only
possible mode of charge transport. In the absence of an electric field, this impedes carrier
equilibration within an energetically disordered system of hopping sites. In other words,
low-temperature carrier diffusion and recombination are always non-equilibrium (dispersive)
processes. The presence of an electric field does not abolish the necessity to jump down in
energy, but a carrier can now move to a shallower state with respect to the band edge by
executing a jump along the field. Such jumps become dominant if the energetic distribution
of the density of states (DOS) decreases sharply with energy and if most carriers already
occupy states close to the edge of this distribution. Under such conditions an equilibrium
transport regime can be established even atT = 0. This means that applying an electric
field can radically change characteristics of low-temperature drift and diffusion.

An analysis of many important electronic processes, such as carrier generation and
geminate recombination, requires a self-consistent consideration of both drift and diffusion
of carriers [1–3]. An important point of the analysis is the question of what kind of relation
between the mobilityµ and the diffusivityD can be used under the given conditions.
In general, the impossibility of a quasi-equilibrium energetic distribution of carriers at
low temperatures makes this question irrelevant: processes of carrier drift and diffusion
must be considered independently without assuming any relationship betweenµ and D.
Moreover, introducing these kinetic coefficients under non-equilibrium conditions becomes
questionable since the dispersive drift and diffusion are described by equations different
from the Fokker–Planck equation for the quasi-equilibrium transport regime [1, 2]. Some
low-temperature analogue of the Einstein relation betweenµ andD may, nevertheless, be

† Permanent address: Moscow Engineering Physics Institute, Kashirskoye Shosse 31, Moscow 115409, Russia.

0953-8984/96/427909+08$19.50c© 1996 IOP Publishing Ltd 7909



7910 V I Arkhipov and G J Adriaenssens

used [4–8] if both the carrier packet mean position〈x〉 and its dispersionσ = [〈1x2〉] have
similar time dependencies and if the former is proportional to the electric field strength
F . As long as an equilibrium carrier diffusion is impossible at low temperatures, the
above conditions can be fulfilled only under the non-equilibrium transport regime. Thus,
the questions one should address for the case of low-temperature transport, are: (i) can a
dispersive drift that is linear with respect to the field exist at low temperatures and, if so,
(ii) what conditions limit its existence?

In the present paper low-temperature energetic relaxation, drift, diffusion, and
recombination of excess carriers within a disordered hopping system are considered. It
is shown that applying an electric field is equivalent to increasing the temperature as far
as the energetic distribution of localized carriers is concerned [9–11]. The field-dependent
effective temperatureTF is calculated for an exponential DOS function. Time dependences
of the functions〈x〉(t) and σ(t) are found to be similar within some initial time domain
of relaxation. It is also proven that the low-temperature carrier drift velocity reveals a
non-linear dependence upon the field even at weak fields, but that an initial time domain of
linear drift can be distinguished.

2. Energetic relaxation and diffusion of carriers in the absence of electric field

Under non-equilibrium conditions a carrier occupies a particular localized state at a given
time t if the probability of making a jump into a deeper state has remained low up tot .
The probabilityw for the carrier to remain until the timet in the initial state separated from
the nearest deeper neighbour by the distancer is given by the Poisson distribution

w(r, t) = exp[−ν0t exp(−2γ r)] (1)

whereν0 is the attempt-to-jump frequency andγ is the inverse localization radius. The
probability densityW of finding the nearest deeper neighbour for a state with the energyE

at the distancer is again determined by the Poisson formula:

W(E, r) = exp[−n(E, r)]
dn(E, r)

dr
(2)

wheren(E, r) is the density of localized states with energies exceedingE within the sphere
of radius r. (In this paper the energy scale is chosen so that deeper states have higher
energies.) Combining equations (1) and (2) and integrating overr yields the probability
f (E, t) for a localized state with the energyE to be occupied at timet as a result of a
sequence of uncorrelated relaxation steps:

f (E, t) =
∫ ∞

0
dr

dn(E, r)

dr
exp[−n(E, r)] exp[−ν0t exp(−2γ r)]. (3)

The function f (E, t) plays the role of a non-equilibrium distribution function for
low-temperature carrier relaxation. Unlike the equilibrium Fermi–Dirac or Boltzmann
distributions, it strongly depends upon the DOS function in a particular material.

The last exponential term in the integrand of equation (3) represents a very steep function
of the variabler aroundr = rj :

exp[−ν0t exp(−2γ r)] ∼= 0 r < rj (t)

exp[−ν0t exp(−2γ r)] ∼= 1 r > rj (t)
rj (t) = (1/2γ ) ln(ν0t) (4)

that allows one to reduce equation (3) to [8]

f (E, t) = exp

{
−n

[
E,

1

2γ
ln(ν0t)

]}
. (5)
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Equations (4) and (5) imply that at a given timet carriers occupy those localized states
which have no neighbours with energiesE′ > E at a distance shorter thanrj (t). This
allows the designation of such states as ‘currently metastable states’. In the absence of an
electric field the functionn(E, r) takes the form

n(E, r) = 4πr3

3

∫ ∞

E

dE′ g(E′) (6)

whereg(E) is the usual density-of-states function. The distribution function described by
equation (5) then reduces to

f (E, t) = exp

[
− π

6γ 3
[ln(ν0t)]

3
∫ ∞

E

dE′ g(E′)
]

. (7)

Like the Fermi–Dirac distribution, the functionf (E, t) reveals a rather sharp edge at some
demarcation energyEd(t) determined by the condition

π

6γ 3
[ln(ν0t)]

3
∫ ∞

Ed(t)

dE g(E) = 1. (8)

For an exponential DOS function with the total density of localized states

Nt =
∫ ∞

0
dE g(E)

and the characteristic energy of the distributionE0

g(E) = Nt

E0
exp

(
− E

E0

)
(9)

equation (8) yields [12]

Ed(t) = 3E0 ln

[(
πNt

6γ 3

)1/3

ln(ν0t)

]
. (10)

Energetic relaxation of carriers in a hopping system is coupled to the spreading of their
spatial distribution. The time dependence of the carrier packet dispersion can be estimated
as

dσ(t)

dt
= 1

3
νj (t)

[
rj (t)

]2 = ν0

3
exp

[−2γ rj (t)
] [

rj (t)
]2

(11)

where rj and νj are the characteristic jump distance and the characteristic frequency of
jumps at timet , respectively. Using equation (4) in equation (11) then yields

dσ(t)

dt
= 1

12γ 2t
[ln(ν0t)]

2 . (12)

Integrating equation (12) gives a universal functionσ(t):

σ(t) = 1

36γ 2
[ln(ν0t)]

3 (13)

which depends neither upon a particular choice of the DOS distribution nor upon the total
density of localized states. This universality follows from prescribed time dependencies for
both the jump distance and the jump rate at low temperatures since a carrier makes a jump
as soon as it finds an energetically accessible site at a distance less thanrj (t) [5, 13, 14].
Note that the above results are valid for times

ν0t > 1 (14)

longer than the average dwell time for the first carrier jump after excitation att = 0 that
allows one to introduce the demarcation energy—see equation (10).
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3. Low-temperature carrier recombination

The results obtained above for the distribution function can easily be extended to
describing kinetics of monomolecular carrier recombination at low temperatures. Indeed,
monomolecular recombination is equivalent to carrier trapping by localized states which are
deeper than any states contributing to the hopping transport. Under these conditions the
distribution function given by equation (7) takes the form

fR(E, t) = exp

[
− π

6γ 3
[ln(ν0t)]

3

(
NR +

∫ ∞

E

dE′ g(E′)
)]

(15)

where NR is the concentration of recombination centres. The density of carriers,p(t),
which survive until the timet can be calculated as the total density of carriers occupying
the hopping sites but not recombination centres:

p(t) = p0

∫ ∞

0
dE g(E)fR(E, t)

/(∫ ∞

0
dE

[
g(E) + NRδ(E − ER)

]
fR(E, t)

)
= p0

∫ ∞

0
dE g(E)fR(E, t)

/(
NRfR(∞, t) +

∫ ∞

0
dE g(E)fR(E, t)

)
= p0

∫ ∞

0
dE g(E)f (E, t)

/(
NR +

∫ ∞

0
dE g(E)f (E, t)

)
(16)

where p0 is the initial density of carriers,ER the energy of recombination centres
(ER → ∞), and δ is the Dirac delta function. Substituting equation (7) into equation
(16) and integrating under the condition

πNt

6γ 3
[ln(ν0t)]

3 � 1

yields

p(t) = p0

/(
1 + πNR

6γ 3
[ln(ν0t)]

3

)
. (17)

One should remember that equation (17) describes relaxation of carriers excited at
t = 0. Since monomolecular recombination represents a linear process, this equation can
be considered as a Green function of the problem. Therefore, one could try to use equation
(17) to obtain a solution for the steady-state carrier densitypst corresponding to the constant
generation rateG0:

pst = G0

p0

∫ t

0
dt ′ p(t − t ′) t → ∞. (18)

However, substituting equation (17) into equation (18) leads to a divergence in the integral
and, concomitantly, to an infinitely high steady-state density of carriers. This problem
is solved if one remembers that the slow decrease ofp(t) is due to carriers localized in
relatively deep states which are separated from both nearest accessible hopping neighbours
and nearest recombination centres by rather long distances. The total number of such states
is limited and sooner or later they will be completely filled. The effect of trap filling
prevents new carriers from being localized in isolated states and leads to a higher average
recombination rate. On the other hand, this effect makes the problem non-linear and restricts
the time domain within which equation (18) is valid. Thus, the filling of deep localized states
must be necessarily taken into account when considering the steady-state photoconductivity
and photoluminescence at low temperatures.
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4. Field-assisted energetic relaxation and drift of carriers at low temperatures

The application of an electric field,F , changes the total density of localized states,n(E, r),
accessible for a downward carrier jump from a localized state with the energyE over a
distance equal to or less thanr:

n(E, r) = 2π

∫ r

0
dr ′ r ′2

∫ π

0
dϑ sinϑ

∫ ∞

E−eF r ′ cosϑ
dE′ g(E′) (19)

where e is the elementary charge andϑ the polar angle between the vectorsF and r.
Substituting equation (19) into equation (5) yields the time-dependent energetic distribution
function fF (E, t) of localized carriers in the presence of the electric field:

fF (E, t) = exp

[
−2π

∫ (1/2γ ) ln(ν0t)

0
dr r2

∫ 1

−1
dx

∫ ∞

E−eF rx

dE′ g(E′)
]

. (20)

At weak electric fields the functionfF (E, t) given by equation (20) reduces to the zero-field
distribution function—see equation (7). For strong fields, jump distances close torj in the
field direction give the principal contribution to the integrand in equation (20). The problem
is then effectively reduced from three to one spatial dimension, such that one can write

fF (E, t) = exp

[
−π

γ

(
E0

eF

)2

ln(ν0t)

∫ ∞

E−eF rj (t)

dE g(E)

]
eF

2γE0
ln(ν0t) � 1 (21)

where E0 is the characteristic energy of the DOS distribution. An interesting feature
of equation (21) is that the electric fieldF cannot be characterized as weak or strong
irrespective of a time-scale since, in the most important terms, the field and time are linked
in a universal parameter

eF

2γE0
ln(ν0t).

In particular, any weak-field approximation for the distribution function is valid only within
a restricted time domain.

To illustrate the field dependence offF (E, t) we again employ an exponential DOS
distribution. Substituting equation (9) into equation (21) and integrating yields

fF (E, t) = exp

{
−πNt

γ

(
E0

eF

)2

ln(ν0t) exp

(
eF

2γE0
ln(ν0t)

)
exp

(
− E

E0

)}
. (22)

The distribution function given by equation (22) is also characterized by a demarcation
energyEd(t) [8]:

Ed(t) = eF

2γ
ln(ν0t) + E0 ln

[
πNt

γ

(
E0

eF

)2

ln(ν0t)

]
∼= eF

2γ
ln(ν0t). (23)

A logarithmic time dependence of the demarcation energy is well known for either trap-
controlled [15–17] or hopping [12, 14] dispersive transport at weak electric fields and at
finite temperaturesT :

Ed(t) = kT ln(ν0t). (24)

Comparing equations (23) and (24) shows that the valueeF/2γ plays the role of an effective
temperatureTeff of the energetic distribution of localized carriers:

Teff = eF

2γ k
. (25)



7914 V I Arkhipov and G J Adriaenssens

Under the dispersive transport regime, field-assisted jumps lead to higher jump rates and,
correspondingly, to faster diffusion of localized carriers to deeper states independently of
the particular form of the DOS function. It seems, however, an exceptional property of an
exponential DOS distribution that this process can be described in terms of the effective
temperature. Substituting other DOS functions into equation (21) yields field dependencies
of the localized-carrier distribution function which cannot be simply described in terms of
an effective temperature. Of course, any smoothly decreasing energetic distribution of states
can be approximated by an appropriate exponential DOS function within a limited region of
energies. Concomitantly, the effective-temperature approximation can be valid within some
initial time domain of carrier kinetics even if the DOS is not exponential, but it then fails to
describe the whole relaxation process [18]. Moreover, it was recently shown [11] that even
where the concept works, differentTeff -functions are obtained from different experimental
situations.

Within the initial time domain of the ‘weak electric field’
eF

2γE0
ln(ν0t) � 1 (26)

the characteristic jump distance〈rj 〉 cannot be significantly affected by the field, and average
displacement along the field per jump〈xj 〉 occurs due to a higher probability of finding the
nearest neighbour in that direction. For a carrier jump from a localized state with the energy
E, the value〈xj 〉(E, t) may be estimated as

〈xj 〉(E, t) = 〈rj 〉(t)
[

4π

∫ ∞

E

dE′ g(E′)
]−1

2π

∫ π

0
dϑ sinϑ cosϑ

∫ ∞

E−eF 〈rj 〉 cosϑ
dE′ g(E′)

∼= 〈rj 〉(t)
[

2
∫ ∞

E

dE′ g(E′)
]−1 ∫ 1

−1
dx x

[∫ ∞

E

dE′ g(E′) + eF 〈rj 〉(t)xg(E)

]
= 1

3
eF

[〈rj 〉(t)]2
g(E)

[∫ ∞

E

dE′ g(E′)
]−1

. (27)

For an exponential DOS function, equation (27) gives the energy-independent average
displacement

〈xj 〉(t) = 1

12

eF

E0γ 2
[ln(ν0t)]

2 . (28)

The average carrier drift velocity〈v〉 may be calculated from the average displacement and
the jump rate as

〈v〉(t) = 〈xj 〉(t)〈νj 〉(t) = 1

12

eF

E0γ 2

1

t
[ln(ν0t)]

2 . (29)

Integrating equation (29) yields the time dependence of the carrier packet mean position
in the form

〈x〉(t) = 1

36

eF

E0γ 2
[ln(ν0t)]

3 . (30)

The function〈x〉(t) given by equation (30) is proportional to the fieldF and has the same
time dependence as the zero-field carrier packet dispersionσ(t) defined by equation (13).
In this case the ratioσF/〈x〉 can be considered as a generalization of the Einstein relation
to the non-equilibrium transport regime. Dividing equation (13) by equation (30) yields

σF

〈x〉 = E0

e
. (31)
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Equation (31) shows that the characteristic energyE0 of the DOS function appears in
the low-temperature non-equilibrium Einstein relation instead of the characteristic thermal
energykT [5–7]. In reference [7], the relation was derived from arguments in the energy
domain. The following cautionary notes are relevant to equation (31).

(i) This equation is obtained for an exponential DOS function. Using another energetic
distribution of localized states leads to different time dependences of the functionsσ(t) and
〈x〉(t), even within the ‘weak-field’ time domain, which makes any generalization of the
Einstein relation for low-temperature conditions impossible.

(ii) Validity of the linear-field approximation for the low-temperature carrier drift is
restricted by equation (26) which, therefore, also restricts the time domain within which
equation (31) can be used.

A sufficiently strong electric field enhances carrier jumps to rather shallow localized
states. In this case a carrier, making a jump from a ‘currently metastable state’, will on
average execute a relatively long series of jumps before it finds another state which is also
still metastable at timet . Since carrier jumps along the field represent the dominant mode
of carrier transport at strong fields, the total distancerF covered by a carrier in the course
of such ‘multiple hopping’ between metastable states can be found from the condition

2πρ2rF

∫ ∞

Ed(t)

dE g(E) = 1 (32)

where ρ is the effective radius of a cylinder within which a carrier executes a random
walk, mainly in the field direction. To estimate the radiusρ, it is assumed that the field is
not strong enough to excite carriers to energies above the distribution of localized states.
Under these conditions the average jump distance during the multiple hopping,rmh, can be
estimated from the balance between carrier jumps to shallower and to deeper states. Such an
estimation yieldsrmh = E0/eF , whereE0 is the characteristic energy of the DOS function.
Substitutingρ = rmh into equation (32) gives

rF (t) = 1

2π

(
eF

E0

)2 [∫ ∞

Ed(t)

dE g(E)

]−1

. (33)

For an exponential DOS function, equations (23) and (33) give

rF (t) = ln(ν0t)

2γ
(ν0t)

eF/2γE0. (34)

The characteristic frequency of multiple jumps still should be estimated as〈νj 〉 ∼=
ν0 exp(−2γ rj ) = 1/t since after the first jump from a currently metastable state over the
distancerj , a carrier executes a series of shorter jumps with higher jump frequencies. The
carrier drift velocity can then be written in the form

d

dt
〈x〉(t) = ν0 ln(ν0t)

2γ
(ν0t)

eF/2γE0−1. (35)

Integrating equation (35) yields the average carrier drift displacement

〈x〉(t) = E0 ln(ν0t)

eF
(ν0t)

eF/2γE0 (36)

which has the form〈x〉 ∝ tα typical for the dispersive transport regime. For both trap-
controlled and hopping modes of the carrier drift in weak electric fields at finite temperatures
in materials with exponential DOS distributions the exponentα is given byα = kT /E0.
This again leads to the conclusion that the strong-field carrier drift in hopping systems with
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an exponential DOS function can be described by the effective temperature determined by
equation (25). And again one should note that this is an exceptional property of exponential
DOS distributions.

5. Conclusions

Non-equilibrium carrier transport at low temperatures cannot be characterized as of either
weak-field or strong-field type without reference to the time-scale considered. At sufficiently
long times, carrier drift reveals characteristic features of the strong-field transport for
arbitrarily weak applied fields. For materials with exponential DOS distributions, and within
an initial time region of ‘weak-field transport’, a non-equilibrium analogue of the Einstein
relation between carrier mobility and diffusivity can be introduced with the characteristic
energy of the distribution,E0, playing the role of the thermal energykT .

For strong electric fields, both the energetic distribution of localized carriers and the
carrier drift mobility exhibit strong field dependences. For materials with exponential DOS
functions the both dependences are described by the effective, field-dependent temperature

Teff = eF

2γ k
.

As long as the DOS distribution in a particular material can be approximated by an
exponential function the concept of the effective temperature is applicable within some
restricted time interval of carrier relaxation.
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[13] Arkhipov V I, Bässler H and Rudenko A I 1991 J. Non-Cryst. Solids137/138503
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